Dependent Cartesian Closed Categories

نویسنده

  • Norihiro Yamada
چکیده

We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax. Moreover, they capture the categorical counterpart of the generalization of the simply-typed λ-calculus (STLC) to MLTT in syntax, and give a systematic perspective on the relation between categorical semantics for these type theories. Furthermore, we construct a term model from the syntax, establishing the completeness of our interpretation of MLTT in DCCCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Interpretation of Type Theory in Locally Cartesian Closed Categories

We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to deene a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory.

متن کامل

Cartesian closed stable categories q

The aim of this paper is to establish some Cartesian closed categories which are between the two Cartesian closed categories: SLP (the category of L-domains and stable functions) and DI (the full subcategory of SLP whose objects are all dI-domains). First we show that the exponentials of every full subcategory of SLP are exactly the spaces of stable functions. Then we prove that the full subcat...

متن کامل

Comprehension Categories and the Semantics of Type Dependency

Jacobs, B., Comprehension categories and the semantics of type dependency, Theoretical Computer Science 107 (1993) 169-207. A comprehension category is defined as a functor 8: E-+B’ satisfying (a) cod 0 9 is a fibration, and (b) fis Cartesian in E implies that qfis a pullback in B. This notion captures many structures which are used to describe type dependency (like display-map categories (Tayl...

متن کامل

Nominal Lambda Calculus: An Internal Language for FM-Cartesian Closed Categories

Reasoning about atoms (names) is difficult. The last decade has seen the development of numerous novel techniques. For equational reasoning, Clouston and Pitts introduced Nominal Equational Logic (NEL), which provides judgements of equality and freshness of atoms. Just as Equational Logic (EL) can be enriched with function types to yield the lambda-calculus (LC), we introduce NLC by enriching N...

متن کامل

Wellfounded Trees and Dependent Polynomial Functors

We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed categories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.04747  شماره 

صفحات  -

تاریخ انتشار 2017